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Epidemic spreading in a variety of scale free networks
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We have shown that the epidemic spreading in scale-free networks is very sensitive to the statistics of degree
distribution characterized by the index the effective spreading rale the social strategy used by individuals
to choose a partner, and the policy of administrating a cure to an infected node. Depending on the interplay of
these four factors, the stationary fractions of infected populdfipras well as the epidemic threshold prop-
erties can be essentially different. We have given an example of the evolutionary scale-free network which is
disposed to the spreading and the persistence of infections at any spreading fafer any y. Probably, it
is impossible to obtain a simple immunization program that can be simultaneously effective for all types of
scale-free networks. We have also studied the dynamical solutions for the evolution equation governed by the
epidemic spreading in scale-free networks and found that for the case of vanishingly small cix& tatiee
initial configuration of infected nodes would feature the solution for very long times.
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[. INTRODUCTION sence of a critical epidemic threshold,=0. It implies that
the BA networks are disposed to the spreading and the per-
Many systems in biology, sociology, and economics aresistence of infections at whatever spreading rate the epidemic
best described by complex networks of agents linked by variagents possess #f<3. Fory>4, epidemics on the BA net-
ous physical and informational connections. Detailed studieg/orks have the same properties as on random networks, i.e.
of their connectivity propertiegl-3| have revealed that the there exists\.>0 such that the infection spreads and be-
probability that a node of these networks has dedresu-  ~omes persistent =\, and dies out fast when<\ [7].
ally follows a power law Recently, it has been demonstrated that the BA algorithm
_ is not a uniqgue model generating scale-free graphs. An alter-
P(k)eck™? @) native flexible model based on the principle of evolutionary
selection of a common large-scale structure of biological net-
works [3] has been proposed in R¢B]. Among the clear
advantages of the algorithm discussed in R8f, one can

: . : . . mention that the possible value of indexcan vary in the
ing the property(1) is of great interest for epidemiolod%] . .
ar?d corﬁpu?er \?i(rus Spregadilﬁg]. The key mopdel used idl?the wide range (%) and that the in-degree and out-degree sta-

epidemiological  studies is the susceptibIe—infected-tiStiCS can be tuned in_dependen_tly from an e_zxporjential de_cay
susceptibléSIS) model[5], in which individuals represented [0 @ power law. Studying numerically the epidemic spreading
by nodes exist in either “healthy” or “infected” discrete N evolutionary scale-free networks, we have found that it
states, and each link represents a connection along, wittiffers essentially from those predicted in Rgf] for the BA
which the infection can spread. At each time step, eacti€tworks. In particular, we find the absence of a critical epi-
healthy node is infected at rateif it is connected at least to demic threshold for any>1. This numerical observation
one infected node. At the same time, infected nodes argresents evidence of the sensitivity of epidemic spreading to
cured at rates, regaining susceptibility. One defines an ef- the topological properties of SF graphs, which are obviously
fective spreading rate as=v/é. distinctive for the graphs generated by the different algo-
The first step in understanding epidemic spreading in SFithms even though they enjoy the same probability degree
networks has been made in RET], where the SIS model statistics.
has been defined on the BarabAlbert (BA) scale-free In Ref.[9], it has been supposed that the individual struc-
graphs[2]. The BA graphs are generated by a random pro+tural properties of SF graphs generated in accordance with a
cess such that the vertices are added to the graph one aparticular algorithm can be characterized by a pair-formation
time and connected to a fixed number of earlier verticesprocess, in which each vertexof degreed(v) =k chooses a
selected with probabilities proportional to their degrees, saet of partners according to a specifiedependent rule de-
that a new site is more likely to link to existing sites which scribing the preferential choide social strategyof an indi-
are “popular” at the time the site is added. An important vidual located ab. It was also shown that the critical behav-
conclusion reported in Ref7] on the critical behavior ob- ior and epidemic threshold properties depend very much on
served in the BA scale-free graphs fpi<3 states the ab- the particular social strategy chosen by individuals.
In Ref. [10], it was shown that th&dependent immuni-
zation strategy would change the epidemic threshold in the
*FAX: +49 (0)521/106-6455. BA networks. In particular, it has been demonstrated that if
Email address: VOLCHENK@Physik.Uni-Bielefeld.DE the likelihood of identifying and administering a cure to an

over a large range d{, with an exponenty that ranges be-
tween 1 and 3 depending on the systgth Among various
practical applications, thecale-free(SFH networks exhibit-
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infected node withk links depends on the node’s degree as We study the dynamical solutions of the simplified equa-
k¢, the critical epidemic threshold.>0 would be restored. tion and find the relaxation time(k) within which the initial

In a sense, our paper presents a generalization of the appidemic outbreaks develop into a stationary state. tFor
proaches given in Ref§9] and[10]. In the following sec- <T, the actual disease spreading depends crucially upon the
tion, we introduce the classes of vertic@g possessing the initial distribution of infected individuals over the classeg
same degreels The structure of SF networks is determined since the occasional infection of hubs accumulating a large
by the specification of social strategy of individuals, which isnumber of links at the very onset of spreading process can
described by a coupling between different classes of verticegccelerate it overwhelmingly. The transient processes can
It is important to note that different social strategies can genf€ature the spread of diseases with the vanishingly small cure
erate the SF networks characterized by the same indei rate 6<1.

the power law statistics of the degree distribution. In spite of We dconclude thg p?kf)er W'tlh tan exarsnlg le ?\Lthi ?ﬁ:demlf
that their structural properties rising in accordance to theoPreading process in the evolutionary network. This net-

distinct social strategies of individuals can be rather diﬁer-wor!( is disposed o the sprgadmg and the_ persistence of in-
ent fections at whatever spreading rate the epidemic agents pos-

. . : sess for any index of degree statistigs The initial
In this paper, we consider two alternative models for the y g 98

. . configuration of the infected nodes influences the epidemic
partner 'ch0|§:e preference. Ip the first model, we assume th,@breading in such networks even for very long times.
the society is unstructured in a sense that an individual is
chosen as a partner depending only on its connectivity de-
greek. This type of model has been the focus of studies so
far (see Refs[7,9]). However, from the sociological point of
view, the second model, taking a possible social structure Let us consider a scale-free networkfodes spanned
into account, seems definitely much more natural. In the seawith the graphG(N, y) with y>1. In general, one can par-
ond model, the coupling strength between verticesC, tition the set of verticesv (|[V|=N) into N—1 different
andw e C belonging to different classes is supposed to de<classesCy, comprising vertices having the same degkge
pend on the differencik—s| and fades out ifk—s|>1. We
demonstrate that the epidemic spreadings in these two types ~ Ck={veV:dedv)=k}, ke[l...N=1]. (2
of SF networks are dramatically different even if their indi- i ) . ) )
ces y are equal. Among the striking distinctions, we can” configuration of the graph G(N,y) is the string ¢
point out that an average fraction of infected individuals in= (N1, ...Nk...NN—y) where n=|C,| are the random
the unstructured societies grows up wigHor any immuni- variables distributed in accordance to the power law,
zation administrative policy, but in the structured communi-
ties it decreases witly; that is good news, indeed. 0.(K)= y—1 K7~y n(y— 1)k 3)

We write down an exact evolution equation for the prob- Y 1-(N=1)7 N—e '

ability distribution of infected nodes over the classes of ver-
tices. In spite of popularity of such an approach in the litera-The structural properties of SF networks depend upon the
ture, this equation has not been discussed before. Assumingcial strategy chosen by individuals establishing a pair for-
that the infection of an individual is a rare event, one arriveSmation process generating edges of the gy@(jﬂ, '}’)- It can

at a simplified version of the evolution equation which is o gefined by the matriirsk of which the elements are the

usually discussed in the related papers as the “mean-fielg,papijities that the vertexe/C, chooses some other vertex
approach’(see, for instance,7,10] and many othejsGen- ;- ‘as a partner. For instance, in the popular preference

erally speaking, the. SOIFJ.“O”S of the exact equation ‘?".ffef ttachment model of the scale-free random graphs proposed
from those of the simplified one, nevertheless, the crltlcaC

epidemic threshold\. predicted by these equations is the Y Barabai and Alber{ 2], the elements o depend only on
same. one variablek,

We study the stationary solutions of the simplified equa-
tion in detail; we are interested in the dependence of behav- o=
ior of the average fraction of infected individuals upon the (k)
effective spreading ratk, the power law exponeng, and , )
two affinity parameters characterizing the social strategyvhere (k) is the average number of connections between
chosen by individuals and the immunization policy in bothVertices. For ¥ y<2, the average connectivityk) di-
structured and unstructured societies. These stationary solerges, and therefore the BA graphs do not exist. However,
tions are indeed independent of the initial distribution of in-for other generating algorithms with alternative the SF
fected individuals in SF networks. However, in practical epi-networks exist even for & y<2.
demiology, the knowledge of epidemic dynamits., of the In the present paper, we assume tNat-o and treat the
transient processgss of vital importance since it may help connectivityk as a continuous variable taking values in be-
to devise an optimal dynamical immunization strategy totween 1 ande. The edge generating rule is given by an
avoid the approach of stationary asymptotic solutions chararbitrary positive integrable functiofgenerally speaking, of
acterized by the large fraction of infected population. two variable$, o satisfying the normalization condition

II. DEFINITION OF THE EPIDEMIC SPREADING
PROBLEM IN SCALE-FREE NETWORKS

for any s, (4)
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w o The above equation has a countable number of solutions, but
1= Jl L a(k,s)p,(s)dkds (5)  only one of them belongs to the unit interval. For large con-
nectivitiesk>1, the solution(10) behaves like

In the problem of epidemic spreading in SF networks, we are 1, if 6 u(k)=0(1)
interested in the fraction of infected individuals at tirhe bs=io1] - . ’ (12
0<F(t)<1, which is given by 0, if 6-u(k)=0(1).

_ I1l. SIMPLIFIED EQUATION FOR THE LOW INFECTION

. . . _ In almost all papers devoted to the problem of epidemic
where d’(t’k.) IS the probability function thafc an arb|trary spreading in the SF networks, a simplified version of the Eq.
_nodev E.Ck IS mfec_ted. We suppose that the initial probabil- (9) is considered. Namely, it is assumed that the probability
ity functlond¢(0,k) IS rl:n(r)]wn. d h i that a chosen node will be infected via connection with other

In accor ance with the S.IS mo ], at each time Step j tacted nodes is very smal® ,(k,t)<1. In this case, the
the total fraction of infected individuals in a scale-free Com'right hand side of Eq(9) is expanded into the power series
munity is changed by the quantity in v® ,, and then only the linear term is retained. As a result,

Y
one arrives at the following simplified equation:

dp(t,k)=—35- u(k) p(t,k)+ v(1— ¢(t,k)kO (K,t).
where 0<v»<1 is the infection rate, € §<1 is the rate at (Ll #l)SLI)+r(L= S(LIOKO,L )(13)

which the infected nodes are curefd, is the fraction of

healthy nodes connected to at least one infected Hedis,  Let us note that the solutions of the exact equat®rdiffer
the fraction of infected nodes. In general, the probability offrom those of(13); nevertheless, the critical epidemic thresh-
being linked to an infected node depends upon the socialld A\ predicted by these equations is the same.

strategy of individualsr,

AFZVFh_ﬁFi, (7)

A. Stationary solution of the epidemic equation for low

%)

®y(t,k)=f (k9P () $(1,)ds ® infection rates
1 The stationary solutions;f ,(\,k) =0, of the Eq.(13) is

. . L given by the function
Since the balance equati¢n) is satisfied for any,(k), one

can write down the evolution equation for the probability AkO (k)
functions ¢(t,k) in the following form: fy(\ k)= Nk (k) + (k) (14)
dp(t,k)=—3- u(k) p(t,k) The asymptotic behavior df (\,k) ask>1 depends essen-

+(1-(t,k){1-[1— 1O y(t,k)]k}_ 9) tially upon the large-scale behavior pfk) and o(k,s),

1, wu(k)/AkO (K)=0(1)

The infecting term considers the probability that a node with fLONK) =1
' 770, w(k)/NkO (k)=0(1).

k links is healthy[1— ¢(t,k)] and gets infected in propor-
tion to the ratev>0, via an infected connected node chosen ) . ] _ _
with the probabilitya(k,s). The recovering term describes The stationary probability that any given link points to an
the probability that an infected node chosen with the probinfected node, €0 ,(k)<1, satisfies the self-consistency
ability «(k) is cured in proportion to the ra@>0. One can €duation
think of (k) as a distribution of funds destined for a recov-

(15

ering of individuals from the clas€, provided the total (k):fﬂs@y(s)o(k,s)py(s)ds' (16)
scope is taken as 1. ’ AsO () + u(s)
The stationary solution of the EQ9) [ d;ds(k,t)=0] is
given by the formula Trivial solution ® (k) =0 always satisfies the above equa-
tion and gives a zero stationary prevalentgs=0. A non-
1-[1-v0 (k)] zero stationary prevalenc,(k)#0 is obtained when the
ds(k)= «/k , (10 Eq. (16) has a nontrivial solution in the interval<0® (k)
1-[1=v0 () ]*+ ou(k) <1 that takes place if
in which the .stationary pr(_)bability functio® (k) satisfies “AsO (s,\) o (k,S)p,(s)
the self-consistency equation de Jl NSO (S) + u(S) . O> 1. 1

. - k
0 (k):f a(k,S)Py(SH1—[1-v0,(K)] }ds- (11)  The above inequality defines the critical epidemic threshold
’ 1 1-[1-v0 (k) ]*+ Su(k) such thatf,(k)>0 ash>\(k),
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(b) &

FIG. 1. The critical domains in which the critical epidemic threshold exist¢diothe power law mode(19), for y=3, where the phase
diagram passes through the poi=f 1,a=0) that corresponds to the Barabalbert SF network exactly as predicted in Rgf]; and (b)
the hierarchical society with the social strategy of individuals given by the fun@ibnThe critical epidemic threshold is infinite astakes
negative integer values and has zeros somewhere between negative integers. The pardeteterines the width of the band in critical
domains.

the index of the degree statistigs These figures reveal the
=1 (18 absence of a plain immunization program which can be ef-
fective simultaneously for all types of SF networks and for
all effective spreading rates of viruses. One can see that, in
ables, the critical epidemic threshold dependskoie., in a general, th(_a stationary _fraction of infected individugls for the
structured society, the different classes of vertiGscan ~Model(19) increases withh andy. The model predicts that
possess different critical epidemic thresholds. Otherwise, i€ healing of certain classes of individuals does not help
the probability of being chosen as a partner depends mereffuch in eradication of epidemics except for the small virus
on the connectivity of a node, the same critical epidemicg,pre_ad'ng rates <0.2. An effective immunization program
threshold\ . holds for all vertices of the network. in th!s_case would assume a decentralization of the network

As an example of the epidemic spreading in such a hoProviding a course of remedial treatment to everybody.

mogeneous SF network modeling an unstructured society, let N @ structured society, the coupling between vertices of
us consider a generalized power law model with the sociaflferent classe<, and C depends on the distan¢ke—s|

Ae(K)-

ijU(k,S)py(s) ds

1 wu(s)

Equation (18) shows that ifo(k,s) depends on two vari-

and immunization preference functions given by between them and fades out fér—s|>1. A possible social
strategy of individuals can be modeled by the function of
y—B—1 y—a—1 two variables
e B [ — V4 %1
oK)= ==K )=k,

(y—e—DI'(y)  60(k—s)

k,s)= , 0<e<l,
@B<y-1, y=1 a9 "V el e gt O
21
Then the integral in the Eq18) defining the critical epi- @)
demic threshold converges jf+ «— 3>2 and results in satisfying the normalization conditiof%). Here 6(x) is the
step functionfwe need to include it to make the normaliza-
_(yma=Dyta—p-2) (20) tion integral (5) converge ate]. It is also required thaty

¢ (y-B-a)(y-1) >1+¢. We use the power law modél9) for the immuni-
zation preference functiom(k) with a<y—1. Then the

In Fig. 1(a), we have presented the critical domains in whichcyitical epidemic threshold given by the E@.8) is
the critical epidemic threshold exists for different values of

v. Let us note that one of the phase,3) diagrams pre- n(K) (y—a—1) F'e)I'(y—e)I'(y+a—1)
sented in Fig. (a) (for y=3) passes through the poing ( c(K)= 77— 1 .
=1,0=0) relevant to the BaralaAlbert SF network ex- (ry=D(y=e—1) FT(yta=e—1)
actly as predicted in Ref7]. X kyta-e-1 (22

In Fig. 2, we have sketched out some patterns of compli-
cated behavior of the stationary fraction of infected individu-and is different for the different classes of verti€asexhib-
als F,>0 depending on the affinity parametesisand g iting the power law behavior witk. The domains where the
characterizing the immunization policy and the social strathontrivial critical epidemic threshold exists are determined
egy chosen by individuals, effective spreading rateand by the poles of’(x) and have a bandlike structure. They are
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FIG. 2. The stationary fraction of infected individuds> 0 in the “power law” model(19) depending on the affinity parametersand
B characterizing the immunization policy and the social strategy chosen by individuals, effective spreadinganadethe index of the
degree statisticy. The figures reveal the absence of a plain immunization strategy which can be efficient simultaneously for all types of SF
networks with power law preferencés9). The stationary fractioir , increases with the effective spreading rate of virusesd the index
of degree statisticy. The model predicts that the healing of certain classes of individuals does not help much in eradication of epidemics
except for the small virus spreading rates 0.2.

0y 02 04 _ 06 08 1 12

displayed in Fig. tb). The critical epidemic threshold is in- t —t
finite as« takes negative integer values and has zeros some-  ¢(t,k)= kao(k,T)eXF{T(kT)
where between negative integers. The parametafeter- ’
mines the width of the band in critical domains. t

The behavior of the stationary fraction of infected popu- XeXF{ - T(kt)} (23
lation at different values ok, v, «, ande is displayed in
Fig. (3). In general, it is rather different from the behavior wnere the inverse relaxation time is
observed for the unstructured community described by the
power law mode(19). Similarly to model(19), the fraction 1 1 vk (to
F ., increases with the effective spreading rate but de- W: WJF TJ'O('D(k,T)dT,

d7+ ¢(k,0)

y . . . . . .
creases withy and «. An efficient immunization program

would be to vaccinate hubs and consolidate them to enlarge
12 L

T~ om0+ ke k), (24)

B. Dynamical solution of the evolution equation for low

i X and O (k,t) is presented as the sum of the stationary prob-
infection rates

ability ®(k) satisfying the self-consistency equatigh6)
Given the initial probability distribution of infected nodes @nd the time-dependent par®(k,t), O (k,t)=0(k)

#(0k), the dynamical solutionp(t,k) of Eq. (13) can be +O(Kt). ~
obtained in the following form: Neglecting this time-dependent p#®tk,t), we obtain
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FIG. 3. The behavior of the stationary fraction of infected population at different valugs ¢f «, ande for model (22) in which
individuals chose their partners from the classes of similar communication ability. Similarly to tiyiehe fractionF, increases with the
effective spreading rate but decreases witly and «.

butionsf, g, andv within the unit interval 0,1]. We assume
' (25 thatx represents the current performance of a biological net-
work (say, the protein-protein interaction mawhile y andz

where A (k)= ¢(k,0)— f(\ k) is the departure of the initial are the thresholds for outgoing and incoming edges, respec-

probability distribution of infected population from the sta- (Vely. The network is supposed to be stable urtly and
tionary solution. x<z, and is condemned_ otherW|s_e. Fluctuations of thresh-

The solution(25) is trivial as A<\.. If T(k)>1, the olds reflect the changes in an environment. _
contribution coming from the initial distribution drives ~ The random process begins on the seNofertices with
#(k,t) out from the stationary solution even for very large N0 edges at time O, at a chosen vertexGiven two fixed
time t. For the low infection ratep®|<1, and if6<1, the numbers»<[0,1] and »v<[0,1], the variablex is chosen
initial distribution ¢(k,0) features the epidemic spreading with respect to probability distribution functiofpdf) f, y is
over almost all vertices except maybe a few hubs accumushosen with pdfy, andz is chosen with pdb. We draw the
lating a considerable fraction of connections. e;; edge leaving the vertex and entering th vertex if x
<y andx<z and continue the process to time 1. Other-
wise, if x=y (x=2z), the process moves to other vertices
having no outgoindincoming links yet.

At time t=1, one of three events happens.

We conclude our paper with an example of a scale-free (i) With probability », the random variable is chosen
network, which has no critical epidemic threshold for any  with pdf f but the thresholdg andz keep the values they had
A flexible algorithm generating SF networks based on theat timet—1.
principle of evolutionary selection of a common large-scale (ii) With probability 1— », the random variabl& is cho-
structure of biological networkg3] has been discussed in sen with pdif, and the thresholdgandz are chosen with pdf
Ref. [8] recently. Here we briefly reproduce this algorithm g andv, respectively.
for the convenience of our readers, referring them to F&f. (iii ) With probability v, the random variable is chosen
for detalils. with pdf f, and the threshold is chosen with pdb, but the

One considers the three random variabley, andzthat  thresholdy keeps the value it had at tinte-1.
are the real numbers distributed in accordance with the distri- If x=y, the process stops at theertex and then starts at

t
d)(k,t):f()\,k)—i-A(k)exp{ T

IV. EPIDEMIC SPREADING IN EVOLUTIONARY SCALE-
FREE NETWORKS
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FIG. 4. Statistics of the evolutionary scale-free random gréphThe probability degree distribution®(k) in the log-linear scale for
different values of the parameter, =0, =0.5, =0.7, =0.9, and»=1.0 (bottom to top. Straight line(bottom corresponds to the
pure exponential decay~<2 %) observed in the casg=0; the top line ¢y=1.0) corresponds to the power law decak 2. (b) The
probability degree distributiop(k) vsk in the log-log scale generated di=10° nodes forf =g=v=1, =1, v=0. Here, the circles stay
for the outgoing degreds,; and diamonds are for the incoming degr&gs Both profiles enjoy a power law decay with=2.

some other vertex having no outgoing edges yet=fz, the  state variablex. In the uncorrelated case,=0, the degree
accepting vertey is blocked and does not admit any more distribution function decays exponentiallgfor instance,
incoming links(provided it has any If x<y andx<z, the pn:0:2*kfor f=g=v=1) [8]. For the intermediate values
process continues at the same verteand goes to time of #, the decay rate is mixed.
t+1. In Fig. 4(a@), we have plotted these asymptotic profiles
It has been shown in Rdi8] that the above model exhib- p(k) vs k in the log-linear scale for the case of uniform
its a multivariant behavior depending on the probability dis-densitiesf=g=v =1, for the consequent frequency values
tribution functionsf, g, andv chosen and values of relative =0, »=0.5, =0.7, =0.9, =1 (bottom to top. In
frequenciesy andv. In particular, ifv=0, both thresholdg  Fig. 4(b), we have presented the distributip(k) vs k in the
andz have synchronized dynamics, and sliding the value otog-log scale ovelN=10° vertices forf=g=v=1, =1,
7 from 0 to 1, one can tune the statistics of out-degrees angd=0. Here, the circles stay for outgoing degrees, and dia-
in-degrees simultaneously out from the pure exponential demonds are for incoming degrees. Fox 1, both profiles
cay (for »=0) to the power lawgat »=1) providedf, g, enjoy a power law decay with,= you=2.
andv belong to the class of power law functions. For in- Interestingly, in epidemic spreading properties in such an
stance, by choosing the probability distribution functions inevolutionary network, we note that the preferred function for

the following forms, the above model is
f(uy=(1+a)u®, ao>-1, K \B
(26) o(k)=(1+p) 1——) , B>—1. (28
v(u)=g(u)=(1+8)(1-u?’, B>-1, N—1
one obtains that Expanding the binomial in the above equation, one gets the
L leading terme (k/N—1)#. Consequently, the integral deter-
)= (1+BrR2+p)(1+a) *7F 140 1 mining the critical epidemic threshold diverges ang=0
Py-1(K)=k1 K2+ k for any 1.
(27) Figures %a) and §b) illustrate the absence of the critical

epidemic threshold for modé28) (we have checked this fact
For different values of3, the exponent of the threshold dis- for y up to several tenthsand reveal the complexity of the
tribution, one gets all possible power law decay® pf ; (k). epidemic spreading in an evolutionary SF network as a dy-
Notice that the exponeny=2+ B characterizing the decay namical system. We have presented the results of numerical
of p,—1(k) is independent of the distribution(u) of the  simulations for the epidemic spreading process in the above
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FIG. 5. The fraction of infected agents in the evolutionary SF networks vs the effective spreadingfoatdifferent values ofy. (a)
p(k)=k 2, (b) p(k)<k 5. At the onset of the process, the initial stéthealthy” or “infected” ) has been assigned to each of 1000 nodes
by the coin tossing procedure. Starting from such a random configuration of initially infected individuals, each infection spreading process
was simulated in 1000 consequent iterations and then started again with a different random initial configuration. The bold lines represent the
mean infected fraction averaged over 500 spreading processes vs the effective spreading materror bars correspond to the standard
deviations. Here, a lower line of boxes shows the first quartile of data and an upper line shows the third quatrtile.

network (for y=2 and y=5) starting from the randomly depending only on its connectivity degr&eln the second

chosen configuration of initially infected individuals. At the model, the coupling strength between vertieces C, and

onset of the process, the initial statéhealthy” or “in- w e C, belonging to different classes is assumed to depend

fected”) has been assigned to eachNE 10° nodes by the  on the differenceék—s| and fades out ifk—s|>1. We have

coin tossing procedure with a probability 1/2. Each infectiondemonstrated that the epidemic spreadings in these two types

spreading process takes 1000 consequent iterations and thehSF networks are dramatically different even if their indi-

starts again with a different random initial configuration of cesy are equal. Probably, it is impossible to obtain a simple

infected individuals. The bold lines represent the mean inimmunization program that can be simultaneously effective

fected fraction averaged over 500 spreading processes vs tha all types of SF networks.

effective spreading rate. The error bars correspond to the  We have also studied the dynamical solutions for the evo-

standard deviations. Here, a lower line of boxes shows th&ution equation governed by the epidemic spreading in SF

first quartile of data, and an upper line shows the third quarnetworks and found an expression for the relaxation time

tile. T(k) such that ift<T(k), the disease spreading depends
crucially upon the initial distribution of infected individuals

V. CONCLUSION in the network. In particular, we have shown that for the case
of vanishingly small cure raté<1 the initial configuration
In the present paper, we have shown that epidemic spreadrould feature the solution for very long times.

ing in scale-free networks is very sensitive to the statistics of Finally, we have given the example of the evolutionary SF

degree distribution characterized by the indgxthe effec- network which is disposed to the spreading and the persis-

tive spreading rate of a virug,, the social strategy using by tence of infections at any spreading rate-0 for any value

individuals to choose a partner, and the policy of adminis-of the indexy. We have demonstrated that such a network is

trating a cure to an infected node. Depending on the interplagtrongly influenced by the initial configuration of the in-

of these four factors, the stationary fractions of infectedfected nodes even for long times.

populationF, as well as the epidemic threshold properties

can be essentlall_y different. _ ACKNOWLEDGMENT
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