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Epidemic spreading in a variety of scale free networks

D. Volchenkov,* L. Volchenkova, and Ph. Blanchard
BiBoS, University of Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

~Received 17 May 2002; published 30 October 2002!

We have shown that the epidemic spreading in scale-free networks is very sensitive to the statistics of degree
distribution characterized by the indexg, the effective spreading ratel, the social strategy used by individuals
to choose a partner, and the policy of administrating a cure to an infected node. Depending on the interplay of
these four factors, the stationary fractions of infected populationFg as well as the epidemic threshold prop-
erties can be essentially different. We have given an example of the evolutionary scale-free network which is
disposed to the spreading and the persistence of infections at any spreading ratel.0 for anyg. Probably, it
is impossible to obtain a simple immunization program that can be simultaneously effective for all types of
scale-free networks. We have also studied the dynamical solutions for the evolution equation governed by the
epidemic spreading in scale-free networks and found that for the case of vanishingly small cure rated!1 the
initial configuration of infected nodes would feature the solution for very long times.
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I. INTRODUCTION

Many systems in biology, sociology, and economics
best described by complex networks of agents linked by v
ous physical and informational connections. Detailed stud
of their connectivity properties@1–3# have revealed that th
probability that a node of these networks has degreek usu-
ally follows a power law

P~k!}k2g ~1!

over a large range ofk, with an exponentg that ranges be-
tween 1 and 3 depending on the system@4#. Among various
practical applications, thescale-free~SF! networks exhibit-
ing the property~1! is of great interest for epidemiology@5#
and computer virus spreading@6#. The key model used in the
epidemiological studies is the susceptible-infecte
susceptible~SIS! model@5#, in which individuals represente
by nodes exist in either ‘‘healthy’’ or ‘‘infected’’ discrete
states, and each link represents a connection along,
which the infection can spread. At each time step, e
healthy node is infected at raten if it is connected at least to
one infected node. At the same time, infected nodes
cured at rated, regaining susceptibility. One defines an e
fective spreading rate asl5n/d.

The first step in understanding epidemic spreading in
networks has been made in Ref.@7#, where the SIS mode
has been defined on the Baraba´si-Albert ~BA! scale-free
graphs@2#. The BA graphs are generated by a random p
cess such that the vertices are added to the graph one
time and connected to a fixed number of earlier vertic
selected with probabilities proportional to their degrees,
that a new site is more likely to link to existing sites whic
are ‘‘popular’’ at the time the site is added. An importa
conclusion reported in Ref.@7# on the critical behavior ob-
served in the BA scale-free graphs forg<3 states the ab
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sence of a critical epidemic threshold,lc50. It implies that
the BA networks are disposed to the spreading and the
sistence of infections at whatever spreading rate the epide
agents possess ifg<3. Forg.4, epidemics on the BA net
works have the same properties as on random networks
there existslc.0 such that the infection spreads and b
comes persistent ifl>lc and dies out fast whenl,lc @7#.

Recently, it has been demonstrated that the BA algorit
is not a unique model generating scale-free graphs. An a
native flexible model based on the principle of evolutiona
selection of a common large-scale structure of biological n
works @3# has been proposed in Ref.@8#. Among the clear
advantages of the algorithm discussed in Ref.@8#, one can
mention that the possible value of indexg can vary in the
wide range (1,̀ ) and that the in-degree and out-degree s
tistics can be tuned independently from an exponential de
to a power law. Studying numerically the epidemic spread
in evolutionary scale-free networks, we have found tha
differs essentially from those predicted in Ref.@7# for the BA
networks. In particular, we find the absence of a critical e
demic threshold for anyg.1. This numerical observation
presents evidence of the sensitivity of epidemic spreadin
the topological properties of SF graphs, which are obviou
distinctive for the graphs generated by the different alg
rithms even though they enjoy the same probability deg
statistics.

In Ref. @9#, it has been supposed that the individual stru
tural properties of SF graphs generated in accordance w
particular algorithm can be characterized by a pair-format
process, in which each vertexv of degreed(v)5k chooses a
set of partners according to a specifiedk-dependent rule de
scribing the preferential choice~a social strategy! of an indi-
vidual located atv. It was also shown that the critical beha
ior and epidemic threshold properties depend very much
the particular social strategy chosen by individuals.

In Ref. @10#, it was shown that thek-dependent immuni-
zation strategy would change the epidemic threshold in
BA networks. In particular, it has been demonstrated tha
the likelihood of identifying and administering a cure to a
©2002 The American Physical Society37-1
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infected node withk links depends on the node’s degree
ka, the critical epidemic thresholdlc.0 would be restored

In a sense, our paper presents a generalization of the
proaches given in Refs.@9# and @10#. In the following sec-
tion, we introduce the classes of verticesCk possessing the
same degreesk. The structure of SF networks is determin
by the specification of social strategy of individuals, which
described by a coupling between different classes of verti
It is important to note that different social strategies can g
erate the SF networks characterized by the same indexg of
the power law statistics of the degree distribution. In spite
that their structural properties rising in accordance to
distinct social strategies of individuals can be rather diff
ent.

In this paper, we consider two alternative models for
partner choice preference. In the first model, we assume
the society is unstructured in a sense that an individua
chosen as a partner depending only on its connectivity
greek. This type of model has been the focus of studies
far ~see Refs.@7,9#!. However, from the sociological point o
view, the second model, taking a possible social struc
into account, seems definitely much more natural. In the s
ond model, the coupling strength between verticesvPCk

andwPCs belonging to different classes is supposed to
pend on the differenceuk2su and fades out ifuk2su@1. We
demonstrate that the epidemic spreadings in these two t
of SF networks are dramatically different even if their ind
ces g are equal. Among the striking distinctions, we c
point out that an average fraction of infected individuals
the unstructured societies grows up withg for any immuni-
zation administrative policy, but in the structured commu
ties it decreases withg; that is good news, indeed.

We write down an exact evolution equation for the pro
ability distribution of infected nodes over the classes of v
tices. In spite of popularity of such an approach in the lite
ture, this equation has not been discussed before. Assu
that the infection of an individual is a rare event, one arriv
at a simplified version of the evolution equation which
usually discussed in the related papers as the ‘‘mean-
approach’’~see, for instance,@7,10# and many others!. Gen-
erally speaking, the solutions of the exact equation di
from those of the simplified one, nevertheless, the criti
epidemic thresholdlc predicted by these equations is th
same.

We study the stationary solutions of the simplified equ
tion in detail; we are interested in the dependence of beh
ior of the average fraction of infected individuals upon t
effective spreading ratel, the power law exponentg, and
two affinity parameters characterizing the social strate
chosen by individuals and the immunization policy in bo
structured and unstructured societies. These stationary s
tions are indeed independent of the initial distribution of
fected individuals in SF networks. However, in practical e
demiology, the knowledge of epidemic dynamics~i.e., of the
transient processes! is of vital importance since it may hel
to devise an optimal dynamical immunization strategy
avoid the approach of stationary asymptotic solutions ch
acterized by the large fraction of infected population.
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We study the dynamical solutions of the simplified equ
tion and find the relaxation timeT(k) within which the initial
epidemic outbreaks develop into a stationary state. Fot
<T, the actual disease spreading depends crucially upon
initial distribution of infected individuals over the classesCk
since the occasional infection of hubs accumulating a la
number of links at the very onset of spreading process
accelerate it overwhelmingly. The transient processes
feature the spread of diseases with the vanishingly small c
rated!1.

We conclude the paper with an example of the epidem
spreading process in the evolutionary SF network. This n
work is disposed to the spreading and the persistence o
fections at whatever spreading rate the epidemic agents
sess for any index of degree statisticsg. The initial
configuration of the infected nodes influences the epide
spreading in such networks even for very long times.

II. DEFINITION OF THE EPIDEMIC SPREADING
PROBLEM IN SCALE-FREE NETWORKS

Let us consider a scale-free network ofN nodes spanned
with the graphG(N,g) with g.1. In general, one can par
tition the set of verticesV (uVu5N) into N21 different
classesCk comprising vertices having the same degreek,

Ck5$vPV:deg~v !5k%, kP@1 . . .N21#. ~2!

A configuration of the graph G(N,g) is the string j
5(n1 , . . .nk . . . nN21) where nk5uCku are the random
variables distributed in accordance to the power law,

pg~k!5
g21

12~N21!12g
k2g;N→`~g21!k2g. ~3!

The structural properties of SF networks depend upon
social strategy chosen by individuals establishing a pair
mation process generating edges of the graphG(N,g). It can
be defined by the matrixŝsk of which the elements are th
probabilities that the vertex vPCs chooses some other verte
wPCk as a partner. For instance, in the popular prefere
attachment model of the scale-free random graphs propo
by Baraba´si and Albert@2#, the elements ofŝ depend only on
one variablek,

ssk5
k

^k&
, for any s, ~4!

where ^k& is the average number of connections betwe
vertices. For 1,g,2, the average connectivitŷk& di-
verges, and therefore the BA graphs do not exist. Howe
for other generating algorithms with alternativeŝ the SF
networks exist even for 1,g,2.

In the present paper, we assume thatN→` and treat the
connectivityk as a continuous variable taking values in b
tween 1 and̀ . The edge generating rule is given by a
arbitrary positive integrable function~generally speaking, of
two variables!, s satisfying the normalization condition
7-2
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15E
1

`E
1

`

s~k,s!pg~s!dk ds. ~5!

In the problem of epidemic spreading in SF networks, we
interested in the fraction of infected individuals at timet,
0,F(t),1, which is given by

Fg~ t !5E
1

`

pg~k!f~ t,k!dk, ~6!

where f(t,k) is the probability function that an arbitrar
nodevPCk is infected. We suppose that the initial probab
ity function f(0,k) is known.

In accordance with the SIS model@5#, at each time step
the total fraction of infected individuals in a scale-free co
munity is changed by the quantity

DF5nFh2dFi , ~7!

where 0,n,1 is the infection rate, 0,d,1 is the rate at
which the infected nodes are cured,Fh is the fraction of
healthy nodes connected to at least one infected node,Fi is
the fraction of infected nodes. In general, the probability
being linked to an infected node depends upon the so
strategy of individualss,

Qg~ t,k!5E
1

`

s~k,s!pg~s!f~ t,s!ds. ~8!

Since the balance equation~7! is satisfied for anypg(k), one
can write down the evolution equation for the probabil
functionsf(t,k) in the following form:

] tf~ t,k!52d•m~k!f~ t,k!

1~12f~ t,k!!$12@12nQg~ t,k!#k%. ~9!

The infecting term considers the probability that a node w
k links is healthy@12f(t,k)# and gets infected in propor
tion to the raten.0, via an infected connected node chos
with the probabilitys(k,s). The recovering term describe
the probability that an infected node chosen with the pr
ability m(k) is cured in proportion to the rated.0. One can
think of m(k) as a distribution of funds destined for a reco
ering of individuals from the classCk provided the total
scope is taken as 1.

The stationary solution of the Eq.~9! @] tfst(k,t)50# is
given by the formula

fst~k!5
12@12nQg~k!#k

12@12nQg~k!#k1dm~k!
, ~10!

in which the stationary probability functionQg(k) satisfies
the self-consistency equation

Qg~k!5E
1

`s~k,s!pg~s!$12@12nQg~k!#k%

12@12nQg~k!#k1dm~k!
ds. ~11!
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The above equation has a countable number of solutions
only one of them belongs to the unit interval. For large co
nectivitiesk@1, the solution~10! behaves like

fst.k@1H 1, if d•m~k!5o~1!,

0, if d•m~k!5O~1!.
~12!

III. SIMPLIFIED EQUATION FOR THE LOW INFECTION
RATES

In almost all papers devoted to the problem of epidem
spreading in the SF networks, a simplified version of the
~9! is considered. Namely, it is assumed that the probab
that a chosen node will be infected via connection with ot
infected nodes is very small,nQg(k,t)!1. In this case, the
right hand side of Eq.~9! is expanded into the power serie
in nQg and then only the linear term is retained. As a res
one arrives at the following simplified equation:

] tf~ t,k!52d•m~k!f~ t,k!1n„12f~ t,k!…kQg~k,t !.
~13!

Let us note that the solutions of the exact equation~9! differ
from those of~13!; nevertheless, the critical epidemic thres
old lc predicted by these equations is the same.

A. Stationary solution of the epidemic equation for low
infection rates

The stationary solutions,] t f g(l,k)50, of the Eq.~13! is
given by the function

f g~l,k!5
lkQg~k!

lkQg~k!1m~k!
. ~14!

The asymptotic behavior off g(l,k) ask@1 depends essen
tially upon the large-scale behavior ofm(k) ands(k,s),

f g~l,k!.k@1H 1, m~k!/lkQg~k!5o~1!

0, m~k!/lkQg~k!5O~1!.
~15!

The stationary probability that any given link points to a
infected node, 0,Qg(k)<1, satisfies the self-consistenc
equation

Qg~k!5E
1

`lsQg~s!s~k,s!pg~s!

lsQg~s!1m~s!
ds. ~16!

Trivial solution Qg(k)50 always satisfies the above equ
tion and gives a zero stationary prevalence,f g50. A non-
zero stationary prevalencef g(k)Þ0 is obtained when the
Eq. ~16! has a nontrivial solution in the interval 0,Qg(k)
<1 that takes place if

dQF E
1

`lsQg~s,l!s~k,s!pg~s!

lsQg~s,l!1m~s!
dsGU

Q50

>1. ~17!

The above inequality defines the critical epidemic thresh
such thatf g(k).0 asl.lc(k),
7-3
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FIG. 1. The critical domains in which the critical epidemic threshold exists for~a! the power law model~19!, for g53, where the phase
diagram passes through the point (b51,a50) that corresponds to the Baraba´si-Albert SF network exactly as predicted in Ref.@7#; and~b!
the hierarchical society with the social strategy of individuals given by the function~21!. The critical epidemic threshold is infinite asa takes
negative integer values and has zeros somewhere between negative integers. The parameter« determines the width of the band in critica
domains.
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lc~k!•F E
1

`ss~k,s!pg~s!

m~s!
dsG51. ~18!

Equation ~18! shows that ifs(k,s) depends on two vari-
ables, the critical epidemic threshold depends onk, i.e., in a
structured society, the different classes of verticesCk can
possess different critical epidemic thresholds. Otherwise
the probability of being chosen as a partner depends me
on the connectivity of a node, the same critical epidem
thresholdlc holds for all vertices of the network.

As an example of the epidemic spreading in such a
mogeneous SF network modeling an unstructured society
us consider a generalized power law model with the so
and immunization preference functions given by

s~k!5
g2b21

g21
kb, m~k!5

g2a21

g21
ka,

a,b,g21, g>1. ~19!

Then the integral in the Eq.~18! defining the critical epi-
demic threshold converges ifg1a2b.2 and results in

lc5
~g2a21!~g1a2b22!

~g2b2a!~g21!
. ~20!

In Fig. 1~a!, we have presented the critical domains in whi
the critical epidemic threshold exists for different values
g. Let us note that one of the phase (a,b) diagrams pre-
sented in Fig. 1~a! ~for g53) passes through the point (b
51,a50) relevant to the Baraba´si-Albert SF network ex-
actly as predicted in Ref.@7#.

In Fig. 2, we have sketched out some patterns of com
cated behavior of the stationary fraction of infected individ
als Fg.0 depending on the affinity parametersa and b
characterizing the immunization policy and the social str
egy chosen by individuals, effective spreading ratel, and
04613
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the index of the degree statisticsg. These figures reveal th
absence of a plain immunization program which can be
fective simultaneously for all types of SF networks and
all effective spreading rates of viruses. One can see tha
general, the stationary fraction of infected individuals for t
model ~19! increases withl andg. The model predicts tha
the healing of certain classes of individuals does not h
much in eradication of epidemics except for the small vir
spreading ratesl,0.2. An effective immunization program
in this case would assume a decentralization of the netw
providing a course of remedial treatment to everybody.

In a structured society, the coupling between vertices
different classesCk and Cs depends on the distanceuk2su
between them and fades out foruk2su@1. A possible social
strategy of individuals can be modeled by the function
two variables

s~k,s!5
~g2«21!G~g!

~g21!G~g2«!G~«!

u~k2s!

~k2s!12«
, 0,«,1,

~21!

satisfying the normalization condition~5!. Hereu(x) is the
step function@we need to include it to make the normaliz
tion integral ~5! converge at̀ ]. It is also required thatg
.11«. We use the power law model~19! for the immuni-
zation preference functionm(k) with a,g21. Then the
critical epidemic threshold given by the Eq.~18! is

lc~k!5
~g2a21!

~g21!~g2«21!
•

G~«!G~g2«!G~g1a21!

G~g!G~g1a2«21!

3kg1a2«21 ~22!

and is different for the different classes of verticesCk exhib-
iting the power law behavior withk. The domains where the
nontrivial critical epidemic threshold exists are determin
by the poles ofG(x) and have a bandlike structure. They a
7-4
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FIG. 2. The stationary fraction of infected individualsFg.0 in the ‘‘power law’’ model~19! depending on the affinity parametersa and
b characterizing the immunization policy and the social strategy chosen by individuals, effective spreading ratel, and the index of the
degree statisticsg. The figures reveal the absence of a plain immunization strategy which can be efficient simultaneously for all type
networks with power law preferences~19!. The stationary fractionFg increases with the effective spreading rate of virusesl and the index
of degree statisticsg. The model predicts that the healing of certain classes of individuals does not help much in eradication of ep
except for the small virus spreading ratesl,0.2.
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displayed in Fig. 1~b!. The critical epidemic threshold is in
finite asa takes negative integer values and has zeros so
where between negative integers. The parameter« deter-
mines the width of the band in critical domains.

The behavior of the stationary fraction of infected pop
lation at different values ofl, g, a, and« is displayed in
Fig. ~3!. In general, it is rather different from the behavi
observed for the unstructured community described by
power law model~19!. Similarly to model~19!, the fraction
Fg increases with the effective spreading ratel, but de-
creases withg and a. An efficient immunization program
would be to vaccinate hubs and consolidate them to enla
g.

B. Dynamical solution of the evolution equation for low
infection rates

Given the initial probability distribution of infected node
f(0,k), the dynamical solutionf(t,k) of Eq. ~13! can be
obtained in the following form:
04613
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f~ t,k!5nkE
0

t

Q~k,t!expF t2t

T~k,t!Gdt1f~k,0!

3expF2
t

T~k,t !G , ~23!

where the inverse relaxation time is

1

T~k,t !
5

1

T~k!
1

nk

t E0

t

Q̃~k,t!dt,

1

T~k!
5dm~k!1nkQ~k!, ~24!

and Q(k,t) is presented as the sum of the stationary pr
ability Q(k) satisfying the self-consistency equation~16!

and the time-dependent partQ̃(k,t), Q(k,t)5Q(k)
1Q̃(k,t).

Neglecting this time-dependent partQ̃(k,t), we obtain
7-5
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FIG. 3. The behavior of the stationary fraction of infected population at different values ofl, g, a, and« for model ~21! in which
individuals chose their partners from the classes of similar communication ability. Similarly to model~19!, the fractionFg increases with the
effective spreading ratel but decreases withg anda.
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f~k,t !5 f ~l,k!1D~k!expF2
t

T~k!G , ~25!

whereD(k)5f(k,0)2 f (l,k) is the departure of the initia
probability distribution of infected population from the st
tionary solution.

The solution~25! is trivial as l,lc . If T(k)@1, the
contribution coming from the initial distribution drive
f(k,t) out from the stationary solution even for very larg
time t. For the low infection ratesunQu!1, and ifd!1, the
initial distribution f(k,0) features the epidemic spreadin
over almost all vertices except maybe a few hubs accu
lating a considerable fraction of connections.

IV. EPIDEMIC SPREADING IN EVOLUTIONARY SCALE-
FREE NETWORKS

We conclude our paper with an example of a scale-f
network, which has no critical epidemic threshold for anyg.
A flexible algorithm generating SF networks based on
principle of evolutionary selection of a common large-sc
structure of biological networks@3# has been discussed i
Ref. @8# recently. Here we briefly reproduce this algorith
for the convenience of our readers, referring them to Ref.@8#
for details.

One considers the three random variablesx, y, andz that
are the real numbers distributed in accordance with the di
04613
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butionsf, g, andv within the unit interval@0,1#. We assume
thatx represents the current performance of a biological n
work ~say, the protein-protein interaction map!, while y andz
are the thresholds for outgoing and incoming edges, res
tively. The network is supposed to be stable untilx,y and
x,z, and is condemned otherwise. Fluctuations of thre
olds reflect the changes in an environment.

The random process begins on the set ofN vertices with
no edges at time 0, at a chosen vertexi. Given two fixed
numbershP@0,1# and nP@0,1#, the variablex is chosen
with respect to probability distribution function~pdf! f, y is
chosen with pdfg, andz is chosen with pdfv. We draw the
ei j edge leaving thei vertex and entering thej vertex if x
,y andx,z and continue the process to timet51. Other-
wise, if x>y (x>z), the process moves to other vertic
having no outgoing~incoming! links yet.

At time t>1, one of three events happens.
~i! With probability h, the random variablex is chosen

with pdf f but the thresholdsy andz keep the values they ha
at time t21.

~ii ! With probability 12h, the random variablex is cho-
sen with pdff, and the thresholdsy andz are chosen with pdf
g andv, respectively.

~iii ! With probability n, the random variablex is chosen
with pdf f, and the thresholdz is chosen with pdfv, but the
thresholdy keeps the value it had at timet21.

If x>y, the process stops at thei vertex and then starts a
7-6
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FIG. 4. Statistics of the evolutionary scale-free random graph.~a! The probability degree distributionsp(k) in the log-linear scale for
different values of the parameterh, h50, h50.5, h50.7, h50.9, andh51.0 ~bottom to top!. Straight line~bottom! corresponds to the
pure exponential decay (;22k) observed in the caseh50; the top line (h51.0) corresponds to the power law decay;k22. ~b! The
probability degree distributionp(k) vs k in the log-log scale generated onN5105 nodes forf 5g5v51, h51, n50. Here, the circles stay
for the outgoing degreeskout and diamonds are for the incoming degreeskin . Both profiles enjoy a power law decay withg52.
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some other vertex having no outgoing edges yet. Ifx>z, the
accepting vertexj is blocked and does not admit any mo
incoming links~provided it has any!. If x,y andx,z, the
process continues at the same vertexi and goes to time
t11.

It has been shown in Ref.@8# that the above model exhib
its a multivariant behavior depending on the probability d
tribution functionsf, g, andv chosen and values of relativ
frequenciesh andn. In particular, ifn50, both thresholdsy
andz have synchronized dynamics, and sliding the value
h from 0 to 1, one can tune the statistics of out-degrees
in-degrees simultaneously out from the pure exponential
cay ~for h50) to the power laws~at h51) providedf, g,
and v belong to the class of power law functions. For i
stance, by choosing the probability distribution functions
the following forms,

f ~u!5~11a!ua, a.21,
~26!

v~u![g~u!5~11b!~12u!b, b.21,

one obtains that

ph51~k!.k@1

~11b!G~21b!~11a!212b

k21b F110S 1

kD G .
~27!

For different values ofb, the exponent of the threshold dis
tribution, one gets all possible power law decays ofph51(k).
Notice that the exponentg521b characterizing the deca
of ph51(k) is independent of the distributionf (u) of the
04613
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state variablex. In the uncorrelated case,h50, the degree
distribution function decays exponentially~for instance,
ph50522k for f 5g5v51) @8#. For the intermediate value
of h, the decay rate is mixed.

In Fig. 4~a!, we have plotted these asymptotic profil
p(k) vs k in the log-linear scale for the case of unifor
densitiesf 5g5v51, for the consequent frequency valu
h50, h50.5, h50.7, h50.9, h51 ~bottom to top!. In
Fig. 4~b!, we have presented the distributionp(k) vs k in the
log-log scale overN5105 vertices for f 5g5v51, h51,
n50. Here, the circles stay for outgoing degrees, and d
monds are for incoming degrees. Fork@1, both profiles
enjoy a power law decay withg in5gout52.

Interestingly, in epidemic spreading properties in such
evolutionary network, we note that the preferred function
the above model is

s~k!5~11b!S 12
k

N21D b

, b.21. ~28!

Expanding the binomial in the above equation, one gets
leading term}(k/N21)b. Consequently, the integral dete
mining the critical epidemic threshold diverges andlc50
for any g.

Figures 5~a! and 5~b! illustrate the absence of the critica
epidemic threshold for model~28! ~we have checked this fac
for g up to several tenths! and reveal the complexity of the
epidemic spreading in an evolutionary SF network as a
namical system. We have presented the results of nume
simulations for the epidemic spreading process in the ab
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FIG. 5. The fraction of infected agents in the evolutionary SF networks vs the effective spreading ratel for different values ofg. ~a!
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network ~for g52 and g55) starting from the randomly
chosen configuration of initially infected individuals. At th
onset of the process, the initial state~‘‘healthy’’ or ‘‘in-
fected’’! has been assigned to each ofN5103 nodes by the
coin tossing procedure with a probability 1/2. Each infecti
spreading process takes 1000 consequent iterations and
starts again with a different random initial configuration
infected individuals. The bold lines represent the mean
fected fraction averaged over 500 spreading processes v
effective spreading ratel. The error bars correspond to th
standard deviations. Here, a lower line of boxes shows
first quartile of data, and an upper line shows the third qu
tile.

V. CONCLUSION

In the present paper, we have shown that epidemic spr
ing in scale-free networks is very sensitive to the statistics
degree distribution characterized by the indexg, the effec-
tive spreading rate of a virus,l, the social strategy using b
individuals to choose a partner, and the policy of admin
trating a cure to an infected node. Depending on the interp
of these four factors, the stationary fractions of infect
populationFg as well as the epidemic threshold propert
can be essentially different.

We have considered two alternative models for the par
choice preference. In the first model, the society is unstr
tured in the sense that an individual is chosen as a par
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depending only on its connectivity degreek. In the second
model, the coupling strength between verticesvPCk and
wPCs belonging to different classes is assumed to dep
on the differenceuk2su and fades out ifuk2su@1. We have
demonstrated that the epidemic spreadings in these two t
of SF networks are dramatically different even if their ind
cesg are equal. Probably, it is impossible to obtain a sim
immunization program that can be simultaneously effect
for all types of SF networks.

We have also studied the dynamical solutions for the e
lution equation governed by the epidemic spreading in
networks and found an expression for the relaxation ti
T(k) such that if t<T(k), the disease spreading depen
crucially upon the initial distribution of infected individual
in the network. In particular, we have shown that for the ca
of vanishingly small cure rated!1 the initial configuration
would feature the solution for very long times.

Finally, we have given the example of the evolutionary
network which is disposed to the spreading and the per
tence of infections at any spreading ratel.0 for any value
of the indexg. We have demonstrated that such a network
strongly influenced by the initial configuration of the in
fected nodes even for long times.
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